Management Metrics, A Primer Tim Adams NASA Kennedy Space Center 2015 ASQ World Conference [Selected Slides]

 Answer the "journalistic questions" about management metrics, metrics for managing.

Metrics for Management

 Use these answers to motivate the manager to build and use metrics for his/her organization.

Metric – a mathematical view

- In Mathematics, a metric is an abstraction of the notion of distance.
- Not all topologies* have a metric space, and not all metric spaces measure distance the same way.

Management metric – flow diagram

• A management metric assigns a measure to the performance gap.

What is a management metric?

• A mathematical function that assigns a measure to the "gap" between the output's current state (c) and the goal's desired state (d).

Math for metrics – getting started

- Absolute Error
 - $> \Delta_{AE} = |d c|.$

- Relative Error
 - $> \Delta_{RE} = |(d c)/d|$ where $d \neq 0$.
- Relative Change
 - > $\Delta_{\text{RC}} = (c d)/|d|$ where $d \neq 0$.

Management metrics – 2 types

Subjective

- > Produced by a state of mind
- Particular to an individual
- Example: "We are safe."

Objective

- Material object, not mental concept
- > Actual existence
- Not influenced by emotion or opinion
- Example: "No accidents occurred."

"Subjective" metrics – example

"Objective" metrics – 3 types

- 1. Effectiveness (~ Quality)
 - How well results accomplished the stated purpose.

- 2. Efficiency (~ Quantity)
 - How well resources were used or consumed.
- 3. Appeal (~ Acceptance)
 - > How well human preference was satisfied.

Effectiveness metrics – 2 types

Technical characteristics

Physical characteristics (e.g., size, shape) and functional capability. "On the drawing."

Operating characteristics

Non-physical characteristics being operating behaviors and outcomes (examples on next page). "Inferred by the drawing."

Operating characteristics – 9 types

Safety : Freedom from accident and loss	Usability : Human interfaces	Supportability and Serviceability: Service throughout the planned life cycle
Reliability : Likelihood of having an uptime (failure- free) state for a stated duration or load	Maintainability: Likelihood of returning to an uptime state due to maintenance or repair	Availability: Likelihood a repairable item has an uptime state; A = f (R, M)
Producibility : Ease and economy of producing or manufacturing	Affordability: Total cost of ownership and not only system acquisition cost	Disposability : Disassembly and disposal (environmental stewardship)

Where should metrics be used?

- Metrics are <u>needed</u>:
 - With imperfect systems.

- > When desired state is critical.
- When management has a high desire to obtain the desired state.
- Metrics are <u>not needed</u>
 - > With perfect or low-risk systems.

Why do metrics?

- To quantitatively characterize the performance gap and to support the decision to...
 - > Continue as is,
 - Make adjustments (changes), or
 - > Obtain more information to make a risk-informed decision.
 - > Graphs can be misleading.

Great graph; why metric formulas?

Desired state = 2400 hr; Avg current state = 1300 hr)

Example What is the trend? (**d** = ?)

Trending without graphs

- All graphs used the same data!
- To test for a trend in discrete events without graphing, use the Laplace Test, a test statistic.

$$z = \left[\left(\left(\sum_{i}^{n} t_{i} \right) / n \right) - T / 2 \right] / T \sqrt{1 / (12n)}$$

- > t_i is the time from the start time to the time of the ith event.
- > n is the number of events.
- \succ T is the time from the start time to the end time of the observation period.

Graphs instead of metric formulas?

- Sometimes "a picture is worth a 1000 words" – and sometimes it can be misleading or confusing.
- When there is sufficient amount of data, do both:
 - Plot the data
 - > Treat the data.

When are metrics collected?

- During the game (Formative)
 > In process; is inferential.
- End of the game (Summative)
 End of process; is descriptive.
- Not at all (not in the game?)
 - Solution with the second se
 - > Use subjective (self-rating) metrics.

How many metrics are needed?

- Consider a dashboard, a combination of metrics, for your organization.
- Performance is seldom assessed by a single metric. Consider ...

Pick one: "I need you to be..."

- 1. Effective
 - > Complete task "x" with no errors.
- 2. Efficient
 - > Produce "y" units per hour, cost.
- 3. Appealing
 - Check your work, support last minute changes, be team oriented, be safe...

Example – aggregating unlike scales

S ASQ

Sink, D.S., Productivity Management: Planning, Measurement and Evaluation, Control and Improvement, 1985, pp. 198-202.

Method – aggregating unlike scales

- The "Objectives Matrix" method:
 - Combines multiple-unlike measures based on any scale into one score.
 - Different weights can be assigned to each performance area.
 - The resulting composite value can be trended over time.
 - Called multicriteria performance / productivity measurement technique.

Who should make the metrics?

- The manager!
- Why, because...

- Making (not buying) your management metrics:
 - > Provides "expert/information power"
 - Can be revealing...

One reason to do your own metrics

"What is most remarkable is that the mere effort to measure a difficult-tomeasure construct can lead to a much deeper understanding and more effective management of that dimension or asset."

Source is Dean Spitzer, author of *Transforming Performance Measurement*, AMACOM, 2007. (Balestracci, D., "Measurement As a Framework for Strategy," Qualitydigest.com, May 08, 2013).

Benchmarking: Do your metrics ...

- <u>Measure distance</u> or length?
 - Distance is between two points.
 - > For management, the two states are:
 - o What you want, and
 - What you have.
 - Length is a measure from zero.
 It does not compare states.
 - $_{\rm O}$ It only measures one state.

24

Benchmarking: Do your metrics ...

 Focus on what should be measured, and not what can be measured?

- <u>Objectively measure</u> all areas of organizational performance?
 - > Effectiveness,
 - > Efficiency, and
 - > Human Appeal?

A management metric is <u>not</u> a...

- <u>Statistic</u>, a function of the sample data.
- <u>Trend</u> when it uses length (not distance).
- Figure of merit, aggregated quantities used to characterize performance and options.
- <u>Risk measure</u>, Prob. of Failure x Impact.
- Any single count or measure or just lengths.

Why? Because a **metric** is a function of two points (states) and not one.

Timothy C. Adams Reliability & Risk Engineer NASA Kennedy Space Center Engineering & Technology Directorate Technical Performance & Integration Division <u>Tim.Adams@NASA.gov</u>

321-867-2267

